Analyzing the sustainability of timber harvest targets using alternative forest management scenarios for a national forest in the western United States.

> SyncroSim 2023 Ft Collins, CO September 19-21, 2023 Ayn Shlisky Hunt

Emphases

- The scale of model applications
- Techniques to simulate silvicultural prescriptions constrained by public policies and social acceptability
- Confidence in model outcomes

Integrated Vegetation Management Strategy

Vegetation Analysis and Scenario Modeling Team

Forest Service

- Cheryl Friesen, Team Lead
- James Rudisill, Silviculture
- Lindsay Anderson, Silviculture
- Bobette Jones, Ecology
- Pek Wijayratne, Ecology
- Rosana Costello, Data Resources Management

ACES

- Ayn Shlisky Hunt, Analyst
- Stuart Johnston, Silviculture

Beachie Creek/ Lionshead Fire

Driving Factors: Changed Ecological Conditions

Lasan

Beachie Creek/ Lionshead Fire

Driving Factors: Social Acceptability of Forest Management Strategies

Managed Stands less then 80 years old in fire perimeter – 27,643 Acres

Northwest Forest Plan Management Areas

LSR = Late Successional Reserve

RR = Riparian Reserve

LSR matrix RR

The Questions

- **1.** Is **75** MMBF of timber harvest sustainable?
- 2. What are the relative impacts of alternative management scenarios on harvest volume and treatment acreage?
- 3. Are there temporal or geographical patterns that can inform strategic planning across administrative or watershed units?
- 4. Can you produce answers while working halftime for 4 months?

Model Basis - Oregon West Cascades Model

Landscape Project Assessments

Inventory plotlevel models Timber Emphasis & other primary sources of timber volume

S-T model evaluation

Timber Emphasis Model (non-spatial)

48 Strata

- 8 Potential Vegetation Types
- 3 Management Areas
- Managed vs unmanaged

> 800 State Classes

- Dominant tree size class (QMD)
- Canopy cover class
- Layering (single, multi)
- Stand age class (year of origin)

Transitions

- Natural disturbances
- Alternative successional pathways
- Forest treatments

Other Strata

- 4 Ranger Districts
- 18 5th field watersheds

Current acres classified into state classes Forest inventory and LiDAR data sources

Cover Types		Struc	Structural age classes						
Code	Description	Code	Description						
DF	Douglas-fir	GF	Grass/Forb/Seedlings	< 10% cover of trees		Grass/	Small	Modium	Largo
GF	Grass/forb	Y	Young trees	< 5" DBH	îtγ	forb	> Open	> Open	→ Open
LP	Lodgepole pine	Р	Pole sized trees	5 – 9.9" DBH	ex	Open			
MH	Mountain hemlock	S	Small trees	10 – 14.9" DBH	du				
SFDF	Silver fir/Doug-fir	M	Medium sized trees	15 -19.9" DBH	2				
		L	Large sized trees	20 – 29.9" DBH	anc		Small	Medium	Medium
Canop	Canopy cover classes		Giant trees	30" + DBH	sity		Medium	Medium	Multi-story
Code	Description				ens				
Ρ	Post-disturbance	Age	class		bgu		\		
0	Open (10-40% cover)	Varie	es by PVT and state		asir		Small	Medium	Large
Μ	Medium (40-60% cover)				cre		Closed		
\bigcirc	Closed (>60% cover)				Ē	,		Wulli-Story	IVIUILI-SLOTY
Canon	v Lavers				_				

- Canopy Layers1Single layer stand2Multi-layer stand
- Had to lump data for states not in model.
- Post moderate and high severity fire (2015-2022) acreages classified as grass/forb.

Primary Drivers of Model Components Manage-Managed/ Model Social Ecolog. State **PVT** ment Natural values values class Component Area Timber Х Х Х Volume Management Χ Х Х Х Х **Prescriptions Scenarios** Х Х

Harvest Volume

- MBF/acre by
 - PVT
 - state class
 - silvicultural treatment

				-					
	Model Age	Douglas-fir	Western	Western	Western	Pacific silver	Pacific silver	Mountain	Mountain
	Range	interm	moist	interm	hemlock cool	fir warm	fir interm	interm	cold
	0 to 10								
	11 to 20				Trar	sition			grass/
_	21 to 30		Thin 10		Volu	ume/acre a	ttribute		forb
	31 to 40	Thin 12-15							
	41 to 50		Thin 12-18	1 nin 10-15	1 nin 9-12				<5"
	51 to 60	-				Thin 9-15	Thin 9-15		dbh
	61 to 70	Thin 15-20		Thin 12-20	Thin 10-20				
	71 to 75	Regen 30	Thin 15-25						
	76 to 80		Regen 25			Thin 15-20			5-10"
	81 to 90	0 10 10 10 10 10 10 10 10 10 1		Regen 35	Thin 15-18 Regen 20-25	Regen 20	Thin 12-18 Regen 20-22		dbh
	91 to 100		Pagan 30						
	101 to 110							Thin 10-15	
	111 to 120		Regen 50				Degen 25-20	Regen 22-25	
	121 to 130						Regen 23-30		10-15″
	131 to 140			Regen 35	Thin 20				αρη
	141 to 150				Regen 30				
	151 to 160								15-20″
	161 to 170				-				dhh
	171 to 200								ubii
	201 to 230								20-30"
	231 to 240								dbh
	241 to 280								
⊢	281 to 300								
	351 to 500							>30″	

"One-and-done" Silvicultural Prescription Scheduled versus non-scheduled timber production

Riparian reserve

Late Successional

Reserve

Majority of volume contribution from nonscheduled timber production areas ends, except after stand replacement disturbance

Matrix/Adaptive Mgt Areas (scheduled timber production)

Scenario 1 Matrix/AMA 75 MMBF Target

"Aging Out" Growth of Un-harvested areas beyond 80 years of age

PVT	Matrix Acres "aging out" of regeneration harvest eligibility	Total Matrix Acres	% of Total Matrix Acres in Scenario
WH intermediate	26881	96568	28
WH moist	713	1981	36
WH cool	745	2719	27
DF intermediate	99	4127	2
PSF warm	4826	12138	40
PSF intermediate	2133	49300	4
MH intermediate	0	1303	0
MH cold	0	5691	0
	35397	173827	20

۰

•

File •

- Silvicultural treatments defined by harvest volume/acre
- Natural disturbances
 - Thinned pathway
 - "One-and-done"
 - ICs for already thinned + available for future regeneration harvest (NEPA projects inprocess; signed vs unsigned decisions)

Х

Π

	Class		To Class		Age Min		Ag	Age Max		Location		
þ.	DF:Pm1		DF:Sc2			26		50	C	3		
	DF:Pm1_T		DF:Sc2_T			26		50	C	1		
Proba	bilistic Transitions Class	To Class	Transition Type	Probabil	Proportion	Age Min	Age Max	Age Shift	Age Reset	TT	T	
	DF:Pm1	DF:GF	RegHar.20	0.1000	0.1500	40	50	0	Yes			
	DF:Pm1	DF:GF	WFMS	0.0080	1.0000	26	50	0	Yes			
	DF:Pm1	DF:GF	WFSR	0.0025	1.0000	26	50	0	Yes			
	DF:Pm1	DF:Pm1	SBW	0.0080	1.0000	26	50	-10	No			
•	DF:Pm1	DF:Pm1_T	PH.poles.15	0.1000	0.7500	40	50	10	No			
	DF:Pm1	DF:Sc2	AltSucc	0.0800	1.0000	26	50	0	Yes			
	DF:Pm1_T	DF:GF	WFMS	0.0080	1.0000	26	50	0	Yes			
	DF:Pm1_T	DF:GF	WFSR	0.0025	1.0000	26	50	0	Yes			
	DF:Pm1_T	DF:Pm1_T	SBW	0.0080	1.0000	26	50	-10	No		÷	
	DF:Pm1_T	DF:Sc2_T	AltSucc	0.0800	1.0000	26	50	0	Yes			

Scenario Acres by Management Area

Scenario 1 - Thin 40-50 yr; regen 70-80 yr - Volume targets: 75 vs 40 MMBF

Total Volume by Ranger District and Simulation Year Scenario 1 – Target 75 MMBF/year

60

80

100

40

Ranger District 2

Ranger District 4

[128] IVMS Scenario 1 - [75] 82.5 MMBF total edit

20

21,489 -

10,745

0 –

0

120

381,987

294,337

80,477

9,871

Untreated

35,548

36,323

90,576

40 MMBF – LSR Only – Total Volume (MBF)

Scenarios 1-5 – Trends in Mature and Old Growth 75 MMBF Volume Target

Late Seral Defined in model as:

- 20" + dbh, low to high % cover
- 15-20" dbh for higher elevation types
 ~ 100 +

years old

Years from present

Comparisons to	F۱	VS	IVMS Scenario 4			
other models	Average harvest MBF/acre	age harvest Acres harvested ABF/acre		Acres harvested		
Analysis Area-wide* – 75% thinning/15% regen harvest (gaps)/10% skips	21		19	4,867* (82.5 MMBF)		
Analysis Area-wide* – 100% thinning	21	1,233*	Not modeled			
Analysis Area-wide* – 100% regeneration harvest	31					
RD2 Project Phase 5 vs Scenario 4 with all IVMS stands	10	3,478	17	4,760 (72 MMBF)		
RD2 Project Phase 5 vs Scenario 4 with NEPA harvest stands only	19	(66 MMBF)	17	3,210 (51 MMBF)		

Comparisons to project analyses	NEPA estimate	IVMS Scenario 4					
Ranger District 4 Project vs Scenario 4 with 60 MMBF target over 1 year							
Harvest acres	5,920	3,130					
Harvest volume	50-60	60					
Ranger District 2 Project vs Scenario 4 with 239 MMBF target over 1-2 years							
Harvest acres	15,900	10,530-16,810					
Harvest volume	239	193 - 294					
Ranger District 3/4 Project vs Scenario 4 with 50 MMBF target over 1 year							
Harvest acres	8,213	2,750					
Harvest volume (not provided)	Assume 50	50					
Ranger District 1 Project vs Scenario 4 with 34 MMBF target over 1-2 years							
Harvest acres	1,661	1,590 - 2,890					
Harvest volume	34	29-51					

Summary

- A 75 MMBF target could be sustained for 30-35 years. It would require as much as 4,500 acres of thinning and 2,500 acres of regen per year, depending on scenario.
- A 40 MMBF target could be sustained for 70-80 years.
- Moderate and high severity fires between 2015 and 2022 are likely to lead to a substantial peak in volume production in about 70 years.
- The area available for harvest drops by over 50% in 30 years when "one and done" thinning is complete (e.g., LSRs, Riparian Reserves).
- A boom and bust cycle occurs roughly every 25 years even if the model is carried out 300 years.

Summary

- Future wildfires have an important role in "feeding" the harvest pool.
- The regional Oregon West Cascades model is an adequate foundation for estimating harvest volumes and acres at a Forest level.
- Ranger Districts and watersheds differ in peak volume production, which can be used to schedule forest management projects across geographies.
- Scenario models improved a Forest-wide understanding of the amount and timing of timber volume harvest opportunities and constraints.

Thank you